Abstract

The high luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11-T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11-T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb 3 Sn conductor and are the first applications of this superconductor to actual accelerator magnets. Collaboration between the US LARP (LHC Accelerator Research Program) and CERN is developing the MQXF magnets, whereas the 11-T dipole magnets are being developed by CERN and Fermilab. This paper reviews the status of Nb 3 Sn technology for accelerator magnets, discusses its main challenges, and discusses how the MQXF and 11-T designs are addressing them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.