Abstract

The use of electrogenerated H2O2 in wastewater treatment is a promising method to degrade the potentially hazardous organic contaminants. Hydrothermally prepared nanocomposites of Nb2O5 nanoparticles on reduced graphene oxide (rGO) were tested toward the oxygen reduction reaction (ORR), via the production of H2O2. The Nb2O5-rGO composite shifts the onset potential to less negatives values when compared to unmodified rGO and Printex 6L carbon. Moreover, an increase in H2O2 production in acidic media from 73.7% to 85.3% was observed for rGO and Nb2O5-rGO, respectively. Nonetheless, the activity of both catalysts in alkaline medium is not significantly different. When compared to carbon Printex, the standard for this type of reaction, the Nb2O5-rGO electrode gives higher yields of H2O2 in either acidic (70.5% vs. 85.3%) or alkaline media (63.4% vs. 74.9%). The selectivity of Nb2O5-rGO composite toward H2O2 formation is attributed to the synergistic effect between the Nb2O5 nanoparticles and the rGO sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.