Abstract

A comprehensive Zr isotopic study was conducted on eleven lunar basalts and highland rocks to search for evidence of the extinct nuclide 92Nb, which decays to 92Zr with a half-life of 36 Ma. Internal isochrons were determined for two early highland rocks, 77215 and 60025. No resolvable Zr isotopic variations were detected in this wide range of lunar samples and thus there is no evidence for the former existence of live 92Nb on the Moon. The Nb/Zr ratios of lunar ilmenites and bulk rock samples vary by only a factor of two to three relative to the chondritic Nb/Zr ratio. No evidence for larger Nb/Zr fractionation was found. This limited fractionation and late isotopic closure of the source region prevents the formation of measurable 92Zr anomalies in high-Ti mare basalts. As a consequence, it is not possible to draw conclusions from the 92Nb- 92Zr chronometer about the timing of early lunar differentiation and to constrain the role of ilmenite in the source region of high-Ti mare basalts. However, the fractionation is still sufficient to deduce an upper limit for the initial 92Nb/ 93Nb ratio of the solar system of <5 × 10 −4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.