Abstract

Niobium (Nb), Titanium (Ti), and Zirconium (Zr) have attracted much attention as implant materials due to it's excellent mechanical properties and biocompatibility. However, little attention has been paid to high Nb-containing biomedical alloys. Here, the 50 wt.%Nb-XTi-Zr ternary alloy(x = 20wt.%, 30 wt.%, 40 wt.%) with relative density over 90% was prepared by powder metallurgy method. The massive α(Zr) distributed along the grain boundaries and lamellar β(Zr) appeared in the grains of β(Nb) in the 50 wt.%Nb-20wt.%Ti-Zr alloy. The acicular α phase is mainly distributed in the β-grain of 50 wt.%Nb-30wt.%Ti-Zr alloy. And α(Ti)-colonies in the β-grains and continuous α(Ti)GB at β-grain boundary can be observed in the 50 wt.%Nb-40wt.%Ti-Zr alloy. Comparing with Nb-20wt.%Ti-Zr alloy and 50 wt.%Nb-40wt.%Ti-Zr alloy, the 50 wt.%Nb-30wt.%Ti-Zr alloy showed lower Vickers hardness and elastic modulus. Furthermore, the as-sintered 50 wt.%Nb-XTi-Zr alloy promoted the cell proliferation and cell adhesion of MG-63 cells on the surface of alloys. In conclusion, the 50 wt.%Nb-XTi-Zr alloy combines excellent mechanical and biological properties, and the 50 wt.%Nb-30wt.%Ti-Zr alloy with lower elastic modulus (close to the bone) is a more promising candidate for bone implant material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call