Abstract

Transition metal atoms incorporated into insulating materials (oxides in particular) can deeply modify their adsorption properties. In particular, charge transfer to adsorbed species can be induced by the presence of substitutional dopants, which introduce new electronic states in the band gap of the host crystal. Here we show, by means of density functional theory calculations, that Nb represents an excellent dopant to turn the rather inactive CaO(100) surface into an electron-rich support. The charge transfer ability of the doped material is shown by comparing the adsorption properties of the electronegative Au atoms on pure and Nb-doped CaO. While in the first case the CaO–Au bonding is relatively weak and the Au atom is essentially neutral, in the Nb-doped system a much stronger adhesion is found due to a net charge transfer from the Nb dopant and to the formation of a gold anion. This mechanism occurs also for Nb in high oxidation states. Nb is thus an excellent modifier of the calcium oxide properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.