Abstract

The measurements of dc Josephson and quasiparticle current-voltage characteristics of four-layered Nb/Al–AlOx–Nb devices with a fixed Nb thickness of 270 nm and Al thicknesses ranging from 40 to 120 nm are reported and analyzed in the framework of a microscopic model developed to determine stationary properties of dirty limit double-barrier junctions. It is shown that the temperature dependence of the supercurrent as well as the values of characteristic voltages are well reproduced by the model calculations with only one fitting parameter. We have revealed a hysteretic-to-nonhysteretic transition in the current-voltage characteristics of our junctions at temperatures near 4.2 K and argue that this effect is caused by two factors: high-transparency insulating barrier with a broad distribution of the transmission coefficient and the temperature as a tuning parameter, which decreases the McCumber–Stewart parameter from values above unity at low temperatures to less than one above 4.2 K. Finally, we show how and why the temperature stability of the proposed Josephson devices can be significantly improved by choosing an appropriate Al thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.