Abstract

The NAD(P)HX repair system is a metabolite damage repair mechanism responsible for restoration of NADH and NADPH after their inactivation by hydration. Deficiency in either of its two enzymes, NAD(P)HX dehydratase (NAXD) or NAD(P)HX epimerase (NAXE), causes a fatal neurometabolic disorder characterized by decompensations precipitated by inflammatory stress. Clinical findings include rapidly progressive muscle weakness, ataxia, ophthalmoplegia, and motor and cognitive regression, while neuroimaging abnormalities are subtle or nonspecific, making a clinical diagnosis challenging. During stress, nonenzymatic conversion of NAD(P)H to NAD(P)HX increases, and in the absence of repair, NAD(P)H is depleted, and NAD(P)HX accumulates, leading to decompensation; however, the contribution of each to the metabolic derangement is not established. Herein, we summarize the clinical knowledge of NAXE deficiency from 30 cases and lessons learned about disease pathogenesis from cell cultures and model organisms and describe a metabolomics signature obtained by untargeted metabolomics analysis in one case at the time of crisis and after initiation of treatment. Overall, biochemical findings support a model of acute depletion of NAD+, signs of mitochondrial dysfunction, and altered lipidomics. These findings are further substantiated by untargeted metabolomics six months post-crisis showing that niacin supplementation reverses primary metabolomic abnormalities concurrent with improved clinical status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.