Abstract
In this paper we introduce a flow on the spectral data for symmetric CMC surfaces in the $3$-sphere. The flow is designed in such a way that it changes the topology but fixes the intrinsic (metric) and certain extrinsic (periods) closing conditions of the CMC surfaces. For rational times we obtain closed (possibly branched) connected CMC surfaces of higher genus. We prove the short time existence of this flow near the spectral data of (a class of) CMC tori. In particular we prove that flowing the spectral data for the Clifford torus is equivalent to the flow of Plateau solutions by varying the angle of the fundamental piece in Lawson's construction for the minimal surfaces $\xi_{g,1}.$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.