Abstract

The intricate interplay between cardiovascular health and metabolic regulation forms a critical junction in understanding the complexities of heart-related conditions. Cardiometabolic regulation orchestrates a sophisticated network of factors governing energy utilization, substrate metabolism, and cellular processes within the cardiovascular system. Balancing these mechanisms is pivotal for optimal heart function, considering the substantial energy demands for both contractile and non-contractile activities. In a healthy heart, fatty acids (FAs) derived from FA β-oxidation contribute to approximately 70% of total energy production. However, emerging evidence sheds light on pathological changes in the heart that lead to profound metabolic alterations. These alterations involve a shift from predominant FA utilization to alternative substrates such as glucose and ketone bodies, accompanied by an increased reliance on FAs. This metabolic remodeling extends beyond substrate metabolism, encompassing changes in transporter expression, the activity of metabolic-related proteins, hormonal functions, and cardiac mitochondrial energetics. This comprehensive review article delves into the intricate web of cardiometabolic regulation, elucidating the multifaceted factors influencing cardiac metabolism across diverse states encompassing health, metabolic disorders, and heart diseases. Unraveling the molecular intricacies and interconnected pathways shaping cardiac metabolism in various physiological and pathological conditions provides critical insights into the adaptive mechanisms and dysregulations associated with heart-related conditions. Furthermore, the exploration of these regulatory mechanisms offers promising avenues for targeted therapeutic interventions and diagnostic strategies in cardiovascular medicine. Integrating multidisciplinary approaches and leveraging advanced technologies will facilitate a deeper understanding of cardiac metabolism, paving the way for innovative interventions to mitigate metabolic dysregulation and optimize cardiac health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call