Abstract

Research at the biological-material interface often has translation in mind, with applications in medical implants, drug delivery, and regenerative medicine. While the clinical impact of this research is undeniable, a clearer picture of the in vivo behavior of materials is needed to address longstanding limitations in performance and function. Advances in chemical biology and biotechnology have propelled our understanding of how small molecules and biologics behave in living systems. Adapting these techniques to the study of synthetic materials, enabled by modern polymer chemistry, will bring molecular resolution to biological-material interactions and guide the development of next-generation biomaterials for therapeutic and diagnostic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call