Abstract
BackgroudAnteromedial osteoarthritis is a recognized indication for unicompartmental knee arthroplasty (UKA). Favorable postoperative outcomes largely depend on proper patient selection, correct implant positioning, and limb alignment. Computer navigation has a proven value over conventional systems in reducing mechanical errors in total knee arthroplasty (TKA). However, the lack of strong evidence impedes the universal use of computer navigation technology in UKA. Therefore, this study was proposed to investigate the accuracy of component positioning and limb alignment in computer navigated UKA and to observe the role of navigation in proper patient selection.MethodsA total of 50 knees (38 patients) underwent computer navigated UKA between 2016 and 2018. All operations were performed by the senior surgeon using the same navigation system and implant type. The navigation system was used as a tool to aid patient selection: knees with preoperative residual varus > 5° on valgus stress and hyperextension > 10° were switched to navigated TKA. We measured the accuracy of component placement in sagittal and coronal planes on postoperative radiographs. Functional outcomes were also evaluated at the final follow-up (a minimum of 16 months).ResultsNine patients had tibia vara and 14 patients had preoperative hyperextension deformity. We observed coronal outliers for the tibial component in 12% knees and for the femoral component in 10% knees. We also observed sagittal outliers for the tibial component in 14% knees and for the femoral component in 6% knees. There was a significant improvement in the functional score at the final follow-up. On multiple linear regression, no difference was found in functional scores of knees with or without tibia vara (p = 0.16) and with or without hyperextension (p = 0.25).ConclusionsOur study further validates the role of computer navigation in desirable implant positioning and limb alignment. We encourage use of computer-assisted navigation as a tool for patient selection, as it allows intraoperative dynamic goniometry and provides real-time kinematic behavior of the knee to obviate pitfalls such as significant residual varus angulation and hyperextension that predispose early failure of UKA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.