Abstract

Patients suspected to have lung cancer, undergo endobronchial ultrasound bronchoscopy (EBUS) for the purpose of diagnosis and staging. For presumptive curable patients, the EBUS bronchoscopy is planned based on images and data from computed tomography (CT) images and positron emission tomography (PET). Our study aimed to evaluate the feasibility of a multimodal electromagnetic navigation platform for EBUS bronchoscopy, integrating ultrasound and segmented CT, and PET scan imaging data. The proof-of-concept study included patients with suspected lung cancer and pathological mediastinal/hilar lymph nodes identified on both CT and PET scans. Images obtained from these two modalities were segmented to delineate target lymph nodes and then incorporated into the CustusX navigation platform. The EBUS bronchoscope was equipped with a sensor, calibrated, and affixed to a 3D printed click-on device positioned at the bronchoscope's tip. Navigation accuracy was measured postoperatively using ultrasound recordings. The study enrolled three patients, all presenting with suspected mediastinal lymph node metastasis (N1-3). All PET-positive lymph nodes were displayed in the navigation platform during the EBUS procedures. In total, five distinct lymph nodes were sampled, yielding malignant cells from three nodes and lymphocytes from the remaining two. The median accuracy of the navigation system was 7.7 mm. Our study introduces a feasible multimodal electromagnetic navigation platform that combines intraoperative ultrasound with preoperative segmented CT and PET imaging data for EBUS lymph node staging examinations. This innovative approach holds promise for enhancing the accuracy and effectiveness of EBUS procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.