Abstract

In this work we develop methods for studying the Navier-Stokes equations in thin domains. We consider various boundary conditions and establish the global existence of strong solutions when the initial data belong to "large sets." Our work was inspired by the recent interesting results of G. Raugel and G. Sell [22, 23, 24] which, in the periodic case, give global existence for smooth solutions of the 3D Navier-Stokes equations in thin domains for large sets of initial conditions. We extend their results in several ways, we consider numerous boundary conditions and as it will appear hereafter, the passage from one boundary condition to another one is not necessarily straightforward. The proof of our improved results is based on precise estimates of the dependence of some classical constants on the thickness $\epsilon$ of the domain, e.g. Sobolev-type constants and the regularity constant for the corresponding Stokes problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.