Abstract

The thin-layer Navier-Stokes equations are solved for the flow about a coplanar close-coupled canard-wing-body configuration at a transonic Mach number of 0.90 and at angles of attack ranging from 0 to 12 degrees. The influence of the canard on the wing flowfield, including canard-wing vortex interaction and wing vortex breakdown, is investigated. A study of canard downwash and canard leading-edge vortex effects, which are the primary mechanisms of the canard-wing interaction, is emphasized. Comparisons between the computations and experimental measurements of surface pressure coefficients, lift, drag and pitching moment data are favorable. A grid refinement study for configurations with and without canard shows that accurate results are obtained using a refined grid for angles of attack where vortex burst is present. At an angle of attack of approximately 12 deg, favorable canard-wing interaction which delays wing vortex breakdown is indicated by the computations and is in good agreement with experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.