Abstract
AbstractWe consider the Navier–Stokes equations in an aperture domain of the three‐dimensional Euclidean space. We are interested in proving the existence of regular solutions corresponding to small initial data and flux through the aperture. The flux is assumed to be smooth and bounded on (0, +∞). As a consequence, we prove the existence of a time‐periodic solution corresponding to a time‐periodic flux through the aperture. Finally, we compare our solution with a solution belonging to a wider class, showing that, if such a solution does exist, then the two solutions coincide. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.