Abstract

A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.