Abstract
Naïve Bayesian network classifiers have proved their effectiveness to accomplish the classification task, even if they work under the strong assumption of independence of attributes in the context of the class node. However, as all of them are based on probability theory, they run into problems when they are faced with imperfection. This paper proposes a new approach of classification under the possibilistic framework with naïve classifiers. To output the naïve possibilistic network classifier, two procedures are studied namely the building phase, which deals with imperfect (imprecise/uncertain) dataset attributes and classes, and the classification phase, which is used to classify new instances that may be characterized by imperfect attributes. To improve the performance of our classifier, we propose two extensions namely selective naïve possibilistic classifier and semi-naïve possibilistic classifier. Experimental study has shown naïve Bayes style possibilistic classifier, and is efficient in the imperfect case.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.