Abstract

To advance translational research of potential therapeutic small molecules against infectious microbes, the compounds must display a relative lack of mammalian cell cytotoxicity. Vero cell cytotoxicity (CC50) is a common initial assay for this metric. We explored the development of naïve Bayesian models that can enhance the probability of identifying non-cytotoxic compounds. Vero cell cytotoxicity assays were identified in PubChem, reformatted, and curated to create a training set with 8741 unique small molecules. These data were used to develop Bayesian classifiers, which were assessed with internal cross-validation, external tests with a set of 193 compounds from our laboratory, and independent validation with an additional diverse set of 1609 unique compounds from PubChem. Evaluation with independent, external test and validation sets indicated that cytotoxicity Bayesian models constructed with the ECFP_6 descriptor were more accurate than those that used FCFP_6 fingerprints. The best cytotoxicity Bayesian model displayed predictive power in external evaluations, according to conventional and chance-corrected statistics, as well as enrichment factors. The results from external tests demonstrate that our novel cytotoxicity Bayesian model displays sufficient predictive power to help guide translational research. To assist the chemical tool and drug discovery communities, our curated training set is being distributed as part of the Supplementary Material. Graphical Abstract Naive Bayesian models have been trained with publically available data and offer a useful tool for chemical biology and drug discovery to select for small molecules with a high probability of exhibiting acceptably low Vero cell cytotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.