Abstract

Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.