Abstract

Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.

Highlights

  • Acute or chronic pathological tissue inflammation strongly impacts on pain perception by sensitizing peripheral sensory neurons, giving rise to local and incapacitating pain hypersensitivity

  • We evaluated the contribution of Nav1.9 channels to mechanical and heat pain hypersensitivity in the carrageenan subacute paw inflammation model

  • Basal responses to noxious heat were identical between the two mouse strains, but following intraplantar carrageenan WT mice developed a strong hypersensitive phenotype (p#0.003 from 2 to 24 h) that was significantly reduced in Nav1.92/2 mice at all times post-injection

Read more

Summary

Introduction

Acute or chronic pathological tissue inflammation strongly impacts on pain perception by sensitizing peripheral sensory neurons, giving rise to local and incapacitating pain hypersensitivity. Inflammatory mediators are known to enhance nociceptive primary afferent fibers excitability, in part by modifying expression and/or function of ionic channels present in nerve endings [1]. Voltagegated sodium channels (VGSCs) play a fundamental role in neuronal excitability as they are directly responsible for initiation and propagation of action potentials, and their implication in different chronic pain disorders, including inflammatory pain, is relatively well established [2]. Nav1.8 has been shown to generate a slowly-inactivating sodium current with a relatively depolarized activation threshold, underlying the depolarizing phase of action potential in C-type fibers [7,8,9]. A link between Nav1.9 channel and inflammatory pain hypersensitivity has been established [15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call