Abstract

This paper presents an investigation into magnetoelastic (ME) biosentinels that capture and detect low-concentration pathogenic bacteria in stagnant liquids. The ME biosentinels are designed to mimic a variety of white blood cell types, known as the main defensive mechanism in the human body against different pathogenic invaders. The ME biosentinels are composed of a freestanding ME resonator coated with an engineered phage that specifically binds with the pathogens of interest. These biosentinels are ferromagnetic and thus can be moved through a liquid by externally applied magnetic fields. In addition, when a time-varying magnetic field is applied, the ME biosentinels can be placed into mechanical resonance by magnetostriction. As soon as the biosentinels bind with the target pathogen through the phage-based biomolecular recognition, a change in the biosentinel’s resonant frequency occurs, and thereby the presence of the target pathogen can be detected. Detection of Bacillus anthracis spores under stagnant flow conditions was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.