Abstract

Electronic skins (e-skins) have the potential to turn into breakthroughs in biomedical applications. Herein, a novel acellular dermal matrix (ADM)-based bioelectronic skin (e-ADM) is used to fabricate versatile "wound therapy-health monitoring" tissue-nanoengineered skin scaffolds via a facile "one-pot" bio-compositing strategy to incorporate the conductive carbon nanotubes and self-assembled micro-copper oxide microspheres with a cicada-wing-like rough surface and nanocone microstructure. The e-ADM exhibits robust tensile strength (22MPa), flexibility, biodegradability, electroactivity, and antibacterial properties. Interestingly, e-ADM exhibits the pH-responsive ability for intelligent command between sterilization and wound repair . Additionally, e-ADM enables accurate real-time monitoring of human activities, providing a novel flexible e-skin sensor to record injury and motions. In vitro and in vivo experiments show that with electrical stimulation, e-ADM could prominently facilitate cell growth and proliferation and further promote full-thickness skin wound healing, providing a comprehensive therapeutic strategy for smart sensing and tissue repair, guiding the development of high-performance "wound therapy-health monitoring" bioelectronic skin-scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.