Abstract

We analyze the problem of maximizing the expected number of species in a nature reserve network, subject to a constraint on the number of sites in the network, given probabilistic information about species occurrences. The problem is a nonlinear binary integer program that is NP-hard. We develop a linear integer programming approximation that may be solved with standard integer programming software. We compare the approximation with two other approaches, an expected greedy approach and a probability hurdle approach, using probabilistic data on occurrences of terrestrial vertebrates in the state of Oregon. Results of the approximation and an exact algorithm are compared by using samples from the North American Breeding Bird Survey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.