Abstract

At Malanjkhand, Central India, lode-type copper (-molybdenum) mineralization occurs within calcalkaline tonalite-granodiorite plutonic rocks of early Proterozoic age. The bulk of the mineralization occurs in sheeted quartz-sulfide veins, and K-silicate alteration assemblages, defined by alkali feldspar (K-feldspar ≫ albite) + dusty hematite in feldspar ± biotite ± muscovite, are prominent within the ore zone and the adjacent host rock. Weak propylitic alteration, defined by albite + biotite + epidote/zoisite, surrounds the K-silicate alteration zone. The mineralized zone is approximately 2 km in strike length, has a maximum thickness of 200 m and dips 65°–75°, along which low-grade mineralization has been traced up to a depth of about 1 km. The ore reserve has been conservatively estimated to be 92 million tonnes with an average Cu-content of 1.30%. Supergene oxidation, accompanied by limited copper enrichment, is observed down to a depth of 100m or more from the surface. Primary ores consist essentially of chalcopyrite and pyrite with minor magnetite and molybdenite. δ34S (‰) values in pyrite and chalcopyrite (−0.38 to +2.90) fall within the range characteristic of granitoid-hosted copper deposits. δ18O (‰) values for vein quartz (+ 6.99 to +8.80) suggest exclusive involvement of juvenile water. Annealed fabrics are common in the ore. The sequence of events that led to the present state of hypogene mineralization is suggested to be as follows: fracturing of the host rock, emplacement of barren vein quartz, pronounced wall-rock alteration accompanied by disseminated mineralization and the ultimate stage of intense silicification accompanied by copper mineralization. Fragments of vein quartz and altered wall rocks and striae in the ore suggest post-mineralization deformation. The recrystallization fabric, particularly in chalcopyrite and sphalerite, is a product of dynamic recrystallization associated with the post-mineralization shearing. The petrology of the host rocks, hydrothermal alteration assemblages, ore mineral associations, fluid inclusions and the sulfur and oxygen isotopes of ores are comparable to those in Phanerozoic (and reported Precambrian) porphyry-copper systems, and the Malanjkhand deposit has important implications for both metallogenic models for, and mineral exploration in, Precambrian terrains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.