Abstract

Randomly coupled phase oscillators may synchronize into disordered patterns of collective motion. We analyze this transition in a large, fully connected Kuramoto model with symmetric but otherwise independent random interactions. Using the dynamical cavity method, we reduce the dynamics to a stochastic single-oscillator problem with self-consistent correlation and response functions that we study analytically and numerically. We clarify the nature of the volcano transition and elucidate its relation to the existence of an oscillator glass phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call