Abstract

We address the physical origin of the ultrarelativistic prompt emission (UPE) phase of GRB 190114C observed in the interval 1.9-3.99 s, by the Fermi-GBM in 10 keV-10 MeV . Thanks to high S/N ratio of Fermi-GBM data, a time resolved spectral analysis has evidenced a sequence of similar blackbody plus cutoff power-law spectra, on ever decreasing time intervals during the entire UPE phase. We assume that during the UPE phase, the inner engine of the GRB, composed of a Kerr black hole and a uniform test magnetic field B0, aligned with the BH rotation axis, operates in an overcritical field. We infer an $e^+e^-$ pair electromagnetic plasma in presence of a baryon load, a PEMB pulse, originating from a vacuum polarization quantum process in the inner engine. This initially optically thick plasma self-accelerates, giving rise at the transparency radius to the MeV radiation observed by Ferm-GBM. At trf > 3.99 s, the electric field becomes undercritical, and the inner engine operates in the classical electrodynamics regime and generate the GeV emission. During both the quantum and the classical electrodynamics processes, we determine the time varying mass and spin of the Kerr BH in the inner engine, fulfilling the Christodoulou-Hawking-Ruffini mass-energy formula. For the first time, we quantitatively show how the inner engine, by extracting the rotational energy of the Kerr BH, produces a series of PEMB pulses. We follow the quantum vacuum polarization process in sequences with decreasing time bins. We compute the Lorentz factors, the baryon loads and the radii at transparency, as well as the value of the magnetic field, assumed to be constant in each sequence. The fundamental hierarchical structure, linking the quantum electrodynamics regime to the classical electrodynamics regime, is characterized by the emission of blackholic quanta with a timescale $t=10^{-9}$s, and energy $E=10^{45}$ erg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.