Abstract

The performance of the B3LYP density functional theory calculations has been studied for the epoxidation reactions of ethylene, propene, and cis- and trans-2-butene with peroxyformic acid and of ethylene with dioxirane and dimethyldioxirane. The transition structures for the epoxidation of ethylene and propene with peroxyformic acid and of ethylene with dioxirane and dimethyldioxirane calculated at the B3LYP level as well as at the QCISD and CCSD levels are symmetrical with nearly identical C−O bond distances, whereas the MP2 calculations favor unsymmetrical transition structures. The geometrical parameters of the transition structures calculated using the B3LYP functional are close to those found at the QCISD and CCSD levels. While the activation barriers for the epoxidation reactions calculated at the B3LYP/6-31G* and B3LYP/6-31+G* levels are very close to the MP4SDTQ/6-31G*//MP2/6-31G* and MP2/6-31G*//MP2/6-31G* values, these activation energies are systematically lower (up to 5−6 kcal/mol) than the ba...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.