Abstract

In an example of Bose-Einstein condensates embedded in two-dimensional optical lattices, we show that in nonlinear periodic systems modulational instability and interband tunneling are intrinsically related phenomena. By direct numerical simulations we find that tunneling results in attenuation or enhancement of instability. On the other hand, instability results in asymmetric nonlinear tunneling. The effect strongly depends on the band gap structure and it is especially significant in the case of the resonant tunneling. The symmetry of the coherent structures emerging from the instability reflects the symmetry of both the stable and the unstable states between which the tunneling occurs. Our results provide evidence of the profound effect of the band structure on the superfluid-insulator transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call