Abstract

A previous study of the folding pathway of the major unfolded species of ribonuclease A by pulsed hydrogen exchange [Udgaonkar, J. B., & Baldwin, R. L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 8197-8201] showed that there is a major early folding intermediate (Il) that resembles a molten globule species in having stable secondary structure while lacking buried tyrosine side chains. Earlier work showed that there is also a late native-like folding intermediate (IN) that can bind the specific inhibitor 2'CMP and that has buried tyrosine side chains. Results are reported here indicating that Il has a well-developed tertiary structure even though its tyrosine side chains are not buried. First, optical stopped-flow experiments suggest that Il binds 2'CMP. Second, the protection against hydrogen exchange is similar in Il and IN for almost all protected amide protons studied. Third, analysis of the mechanism of hydrogen exchange in Il confirms the large protection factors reported earlier for probes in the beta-sheet of ribonuclease A and indicates that the beta-sheet is formed in Il. Other experiments are also reported that test the interpretation of pulsed hydrogen exchange studies of the folding pathway of ribonuclease A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call