Abstract

The mutant am-14 produces no active nicotinamide adenine dinucleotide phosphate-linked glutamate dehydrogenase (GDH) and no protein showing immunological cross-reaction with the enzyme. Nevertheless, it shows complementation with several other am mutants in heterokaryons. Active GDH can be extracted from heterokaryons formed from am-14 and other mutants which, by themselves, produce more or less inactive varieties of the enzyme. The enzyme from am-14 + am-3 heterokaryons can be partially separated from am-3 mutant GDH on a diethylaminoethyl cellulose column. It is characterized by abnormally high thermolability and by a capacity for activation by glutamate. By the same procedure as brings about hybridization between mutant GDH proteins, it has been possible to recover enzyme with the properties of pure am-3 GDH from a partially purified am-14 + am-3 GDH preparation which was initially substantially free of unhybridized am-3 enzyme. This is interpreted as evidence that the active complementation product is a hybrid oligomer containing am-3 monomers and also am-14 monomers, the latter being unable to aggregate by themselves. Heterokaryons formed from am-14 and wild type produce GDH of abnormally high thermolability, presumably due to the formation of am-14 + am(+) hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.