Abstract

This paper describes experiments intended to decide whether UV lesions in DNA act as absolute blocks to chain elongation by the Escherichia coli DNA polymerase or only slow down the polymerization process. Ultraviolet (UV)-irradiated, single-stranded (SS) circular DNA of bacteriophage øX174 was used as template for the polymerase in a reaction mixture in vitro, under conditions allowing synthesis of not more than one complementary strand per template molecule. The mean length of the newly synthesized complementary strands (as determined by velocity sedimentation in alkaline CsCl gradients), as well as the over-all template activity (as measured by deoxyadenosine monophosphate [dAMP] incorporation) was found to decrease with the number of biologically lethal hits sustained by the irradiated templates. With the increase of time or temperature of reaction, the net synthesis of complementary strands increased (as a consequence of increased initiation), but their mean length remained constant. The mean length of synthesized strands was greater than would be expected if all biologically lethal hits were to block the polymerization process. The lethal hits which serve as blocking lesions are inferred to be pyrimidine dimers because it is possible to obtain synthesis of full-length complementary strands if, when heat-denatured, UV-irradiated, double-stranded replicative form (RF II) DNA of bacteriophage øX174 is used as a template, it is pretreated with yeast photoreactivating enzyme (YPRE) in presence of visible light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.