Abstract

Molecular dynamics simulations of high density hard sphere fluids clearly show a breakdown of the Stokes-Einstein equation (SE). This result has been conjectured to be due to the presence of mobile particles, i.e., ones which have the propensity to "hop" distances that are integer multiples of the interparticle distance. We conclusively show that the sedentary particles, i.e., ones complementary to the "hoppers," obey the SE relationship to a good approximation, even though the fluid as a whole violates the SE equation at high densities. These results support the notion that the unusual diffusive behavior of supercooled liquids is dominated by the hopping particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call