Abstract

The development of alternative alloy catalysts with high activity, surpassing platinum group metals, for the oxygen reduction reaction (ORR) is urgently needed in the field of electrocatalysis. The Ag-based single-atom alloy (AgSAA) cluster has been proposed as a promising catalyst for the ORR; however, enhancing its activity under operational conditions remains challenging due to limited insights into its actual active site. Here, we demonstrate that the operando formation of the MO x (OH) y complex serves as the key active site for catalyzing the ORR over AgSAA cluster catalysts, as revealed through comprehensive neural network potential molecular dynamics simulations combined with first-principles calculations. The volcano plot of the ORR over the MO x (OH) y complex addresses the gaps inherent in traditional metallic alloy models for pure AgSAA cluster catalysts in ORR catalysis. The appropriate orbital hybridization between OH and the dopant metal in the MO x (OH) y complexes indicated that the Ag54Co1, Ag54Pd1, and Ag54Au1 clusters are optimal AgSAA catalysts for the ORR. Our work underscores the significance of theoretical modeling considering the reaction atmosphere in uncovering the true active site for the ORR, which can be extended to other reaction systems for rational catalyst design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.