Abstract
Oxygen isotopic composition was studied in the altered host rocks of the Dal’negorsk borosilicate deposit in order to establish a boron source and the origin of ore-forming fluids responsible for deposition of economic borosilicate ore. The relationships between oxygen isotopic composition and geochemistry of the altered igneous rocks occupying various structural and temporal positions in the ore zone were studied, including premineral high-potassium minor intrusions located in the zones of datolite mineralization; alkali basalt, gabbro, and breccia from the sedimentary framework of the deposit; and postmineral basaltic andesite, basalt, and dolerite dikes. It was suggested that interaction of aqueous fluid with host rocks brought about not only variation in oxygen isotopic composition but also shifts in geochemistry of these rocks, especially as concerns the chemical elements contained in ore-forming fluid. The disturbance of oxygen isotopic system is typical of all studied rocks: δ18O values sharply decrease indicating interaction with aqueous fluid at elevated temperatures. The lowest δ18O (from −2.9 to +0.1‰) is characteristic of the premineral high-potassium and ultrapotassium minor intrusions from skarn-datolite zone. Igneous rocks from the sedimentary framework of the deposit have δ18O of +2 to −0.9‰ The δ18O of postmineral basaltic andesite, basalt, and dolerite dikes varies from 0 to +7‰ with increasing distance from the ore zone. The oxygen isotopic composition of aqueous fluid evidences its exogenic origin. The geochemical and isotopic characteristics of ore-forming fluid show that it could have been deep-seated subsurface water similar to the contemporary water of the Alpine fold zone, which contain up to 700–1000 mg/l B and is distinguished by high K, Li, Rb, Cs contents and high K/Na ratio. Similar geochemistry is characteristic of the fluid inclusions in quartz from ore zones. It cannot be ruled out that continental evaporites were a source of boron as well. The relationships between δ18O, K-Ar age, and geochemical parameters of premineral and postmineral altered intrusive bodies allow us to suggest that the subsurface B-bearing water discharged through narrow channels controlled by premineral basaltic bodies. The discharge was probably initiated by emplacement of basalt and dolerite dikes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.