Abstract

The two-dimensional (2D) transitional metal dichalcogenides (TMDS) have become an intensive research topic recently. The alloys of these TMDs have offered continuous tunability of the bandstructure and carrier concentration, providing a new opportunity for various device applications. Here the rich variations in optical excitations in Re x Mo1−x S2 alloy at the nanoscale region are shown. The alloy bandgap and charge response are probed by low-loss high-resolution transmission electron energy loss spectroscopy (HR-EELS). Concurrent density functional theory calculations revealed many electronic structures from n-type semiconductors to metallic and p-type semiconducting nature with band bowing effect. The alloying-induced Peierls distortion leads to a change in crystal symmetry and decreased interlayer coupling. These alloys undergo indirect to direct bandgap transition with the function of Re concentration. These unique correlated structural and electronic properties of these 2D alloys can be potentially applicable for various electronic and optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call