Abstract
Density functional theory and the scanning tunneling microscopy were applied to investigate the nature of the defects on an unrotated reconstructed hexagonal Au(100) surface. We show the correlation between the nature of monovacancies and the geometrical arrangement of the atoms from the first (topmost) layer with respect to the second layer. The vacancies created directly above the atoms from the second layer (on-top position) move spontaneously into the subsurface upon relaxation. For the vacancies created in other places, the subsurface shift is hindered by the energy barrier and the lifted subsurface atom is in the interlayer position. Charge density calculations were compared with results from the scanning tunneling microscopy images which show a good agreement between the theoretical and experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.