Abstract

The western margin of the Gyeonggi massif, southern Korean Peninsula, has preserved N–S trending Neoproterozoic and sporadic Late Mesoproterozoic metaigneous rocks. Here we present the results from systematic field mapping, sensitive high-resolution ion microprobe (SHRIMP) zircon U–Pb dating, and whole-rock geochemical analyses of the Mesoproterozoic and Early Neoproterozoic metaplutonic rocks in the Hongseong area, together with previously published data from the western Gyeonggi massif. The SHRIMP ages of these rocks are categorized into three groups: (1) Late Mesoproterozoic (ca. 1.25–1.15Ga), (2) Early Neoproterozoic (ca. 900–770Ma), and (3) late Early Neoproterozoic (ca. 762–730Ma). The geochronological and geochemical features of the Late Mesoproterozoic rocks suggest that they were possibly formed in association with convergent plate motion. The Early and late Early Neoproterozoic rocks are interpreted to arc-related orogenic and rift-related post-orogenic environments, respectively. These age results and the tectonic signatures provide insight into the convergence process along the margins of the Rodinia supercontinent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call