Abstract

The monovalent thallous ion (Tl) was evaluated at the frog end plate in vitro with intracellular microelectrodes. Recordings included end plate potentials (EPPs), and miniature end plate potentials (MEPPs). Replacement of extracellular potassium (K) by 2.5 mM Tl (a) caused increases in MEPP and EPP amplitudes, MEPP frequency, and quantal content, and (b) caused complete recovery of the EPP facilitation index at BAPTA-loaded nerve terminals. Tl's effects were reversible and concentration dependent, and persisted for > 3 h. The increase in MEPP frequency and its rate of decline due to Tl washout were more pronounced at 0 calcium (Ca)-2 mM EGTA than at 0.3 mM EGTA, suggesting that Tl's effects were not due to elevation of internal Ca. Unlike heavy metal ions reportedly capable of substituting for Ca, 0.2 mM Tl did not block, but further enhanced, elevated MEPP frequencies, occurring after nerve stimulation or in high K, to greater levels with barium (Ba) than with Ca. 200 nM omega-conotoxin (omega-CTX) blocked Tl's effect, indicating that Tl primarily entered the nerve terminal via Ca channels. A 50% reduction in sodium (Na) did not modify Tl's effect, although removal of K in the presence of 20 microM ouabain and 2.5 mM Tl caused an exaggerated increase in MEPP frequency, which decreased with a 50% reduction in Na. Based on the analysis, Tl neither substituted for Ca nor elevated internal Ca and Na, nor were its effects antagonized by ouabain; Tl increased quantal secretion, possibly by a fusogenic mechanism, after its entry into the nerve terminal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call