Abstract

The recently discovered charge order is an intrinsic and universal property of cuprate superconductors, however, its microscopic origin remains debated. Here we review briefly the theoretical work about the nature of charge order in cuprate superconductors. In particular, we show that the electron self-energy obliterates the electron Fermi surface around the antinodal region, leaving behind disconnected Fermi arcs located around the nodal region. The charge-order state on the other hand is driven by the Fermi-arc instability, with a characteristic wavevector corresponding to the hot spots of the Fermi arcs rather than the antinodal nesting vector. Since the pseudogap emanates from the electron self-energy, the Fermi arc, charge order, and pseudogap in cuprate superconductors are intimately related each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.