Abstract

Emerging forms of shared mobility call for new vehicle routing models that take into account vehicle sharing, ride sharing and autonomous vehicle fleets. This study deals with the design of an optimal route network for autonomous vehicles, considering both vehicle sharing and ride sharing. The problem is modeled as a one-to-many-to-one vehicle routing problem with vehicle capacity and range constraints. An ant colony optimization algorithm is applied to the problem in order to construct a set of routes that satisfies user requests under operational constraints. Results show that the algorithm is able to produce solutions in relatively short computational times, while exploiting the possibility of ride sharing to reduce operating costs. Results also underline the potential of exploiting shared autonomous vehicles in the context of a taxi service for booking trips through electronic reservation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.