Abstract

We have developed a conceptually new generation of non-peptidic HIV-1 protease inhibitors incorporating novel structural templates inspired by nature. This has resulted in protease inhibitors with exceptional potency and excellent pharmacological and drug-resistance profiles. The design of a stereochemically defined bis-tetrahydrofuran (bis-THF) scaffold followed by modifications to promote hydrogen bonding interactions with the backbone atoms of HIV-1 protease led to darunavir, the first clinically approved drug for treatment of drug resistant HIV. Subsequent X-ray crystal structure-based design efforts led us to create a range of exceptionally potent inhibitors incorporating other intriguing molecular templates possessing fused ring polycyclic ethers with multiple stereocenters. These structural templates are critical to inhibitors' exceptional potency and drug-like properties. Herein, we will highlight the synthetic strategies that provided access to these complex scaffolds in a stereoselective and optically active form, enabling our medicinal chemistry and drug development efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.