Abstract

Hydrogels are currently in the limelight for applications in soft electronics but they suffer from the tendency to lose water or freeze when exposed to dry environments or low temperatures. Molecular crowding is a prevalent occurrence in living cells, in which molecular crowding agents modify the hydrogen bonding structure, causing a significant reduction in water activity. Here, a wide-humidity range applicable, anti-freezing, and robust hydrogel is developed through the incorporation of natural amino acid proline (Pro) and conductive MXene into polyvinyl alcohol (PVA) hydrogel networks. Theoretical calculations reveal that Pro can transform "free water" into "locked water" via the molecular-crowding effect, thereby suppressing water evaporation and ice forming. Accordingly, the prepared hydrogel exhibits high water retention capability, with 77% and 55% being preserved after exposure to 20 °C, 28% relative humidity (RH)and 35 °C, 90% RH for 12h. Meanwhile, Pro lowers the freezing temperature of the hydrogel to 34 °C and enhances its stretchability and strength. Finally, the PVA/Pro/MXene hydrogels are assembled as multifunctional on-skin strain sensors and conductive electrodes to monitor human motions and detect tiny electrophysiological signals. Collectively, this work provides a molecular crowding strategy that will motivate researchers to develop more advanced hydrogels for versatile applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.