Abstract

Many project tasks and manufacturing processes consist of interdependent time-related activities that can be represented as networks. Deciding which of these sub-processes should receive extra resources to speed up the whole network (i.e., where activity crashing should be applied) usually involves the pursuit of multiple objectives amid a lack of a priori preference information. A common decision support approach lies in first determining efficient combinations of activity crashing measures and then pursuing an interactive exploration of this space. As it is impossible to exactly solve the underlying multiobjective combinatorial optimization problem within a reasonable computation time for real-world problems, we have developed proper solution procedures based on three major (nature-inspired) metaheuristics. This paper describes these implementations, discusses their strengths, and provides results from computational experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.