Abstract

Structural analogues of anti-cancer natural product, dysideanone, were synthesized starting from Wieland-Miescher ketone derivative. In vitro studies have been conducted to evaluate the anti-cancer potential of these unnatural meroterpenoids against colon cancer. Synthesized carbotetracycles were found to be more active as compared to their acyclic carbinol-derivatives. Unnatural carbotetracycles 4b-e, 4h, 4i and 12 were found to be highly effective against the human colon adenocarcinoma cells with IC50 concentrations of 7.5–20 μM. In this series, the carbotetracyclic catechol 4e (IC50 = 7.5 μM) and quinone 12 (IC50 = 8 μM) were found to be the most potent compounds having the IC50 of less than 10 μM with no cytotoxic effect on the normal cells. Downregulation of Cox-2 and survivin and cell cycle arrest eventually leading to apoptosis were found to be the underlying mechanism of the anti-cancer effect of these unnatural meroterpenoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.