Abstract

Volcan Ceboruco, Mexico, erupted ~1,000 years ago, producing the Jala pumice and forming a ~4-km-wide caldera. During that eruption, 2.8 to 3.5 km3 of rhyodacite (~70 wt% SiO2) magma and 0.2 to 0.5 km3 of mixed dacite (~67 wt% SiO2) magma were tapped and deposited as the Jala pumice. Subsequently, the caldera was partially filled by extrusion of the Dos Equis dome, a low-silica (~64 wt% SiO2) dacite dome with a volume of ~1.3 km3. Petrographic evidence indicates that the Jala dacite and Dos Equis dacite originated largely through the mixing of three end-member magmas: (1) rhyodacite magma, (2) dacite magma, and (3) mafic magma. Linear least-squares modeling and detailed modal analysis indicate that the Jala dacite is predominantly a bimodal mixture of rhyodacite and dacite with a small additional mafic component, whereas the Dos Equis dacite is composed of mostly dacite mixed with subordinate amounts of rhyodacite and mafic magma. According to Fe–Ti oxide geothermometry, before the caldera-forming eruption the rhyodacite last equilibrated at ~865 °C, whereas the dacite was originally at ~890 °C but was heated to ~960 °C by intrusion of mafic magma as hot as ~1,030 °C. Zoning profiles in plagioclase and/or magnetite phenocrysts indicate that mixing between mafic and dacite magma occurred ~34–47 days prior to eruption, whereas subsequent mixing between rhyodacite and dacite magmas occurred only 1–4 days prior to eruption. Following the caldera-forming eruption, continued inputs of mafic magma led to effusion of the Dos Equis dome dacite. In this case, timing between mixing and eruption is estimated at ~93–185 days based on the thickness of plagioclase overgrowth rims.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call