Abstract

The solar wind is a magnetized and turbulent plasma. Its turbulence is often dominated by Alfvénic fluctuations and often deemed as nearly incompressible far away from the Sun, as shown by in situ measurements near 1 au. However, for solar wind closer to the Sun, the plasma β decreases (often lower than unity) while the turbulent Mach number M t increases (can approach unity, e.g., transonic fluctuations). These conditions could produce significantly more compressible effects, characterized by enhanced density fluctuations, as seen by several space missions. In this paper, a series of 3D MHD simulations of turbulence are carried out to understand the properties of compressible turbulence, particularly the generation of density fluctuations. We find that, over a broad range of parameter space in plasma β, cross helicity, and polytropic index, the turbulent density fluctuations scale linearly as a function of M t , with the scaling coefficients showing weak dependence on parameters. Furthermore, through detailed spatiotemporal analysis, we show that the density fluctuations are dominated by low-frequency nonlinear structures, rather than compressible MHD eigenwaves. These results could be important for understanding how compressible turbulence contributes to solar wind heating near the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call