Abstract

Salmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity.

Highlights

  • Salmonella enterica subspecies enterica is a bacterial pathogen of global importance for humans and animals

  • Large numbers of SD3246GFP bacteria were recovered from the distal ileum and draining mesenteric and caecal mesenteric and caecal lymph nodes (LNs) of the three infected calves (Figure 1)

  • By treating single cell homogenates of tissue with gentamicin, SD3246-green fluorescent protein (GFP) was found to be predominantly extracellular in both the ileal mucosa and the LNs at 48 h post-infection; intracellular bacteria accounted for only 0.59 ± 0.34% of the population recovered from the ileal mucosa and 2.46 ± 1.74% of bacteria recovered from the lymph nodes across the three infected calves (Figure 1)

Read more

Summary

Introduction

Salmonella enterica subspecies enterica is a bacterial pathogen of global importance for humans and animals. Farmed animals are key reservoirs of human non-typhoidal salmonellosis and infections are frequently associated with ingestion or handling of contaminated meat. In the United States, Salmonella is endemic in cattle and human infections have been attributed to both beef and dairy cattle [2]. Zoonotic infections are partly a consequence of the ability of Salmonella to survive within the bovine lymphatic system and contaminate peripheral lymph nodes, which can enter the food chain via ground beef products [3,4,5,6,7,8]. We recently used sequencing-based approaches to study the relative risk of S. enterica serovars entering the bovine lymphatic system [3] and to identify S. Typhimurium genes required for lymph node colonization [6], but the nature and consequences of interactions at a cellular level in cattle remains relatively poorly understood

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call