Abstract

We analyse the naturalness of the Minimal Supersymmetric Standard Model (MSSM) in the light of recent LHC results from the ATLAS and CMS experiments. We study non-universal boundary conditions for the scalar and the gaugino sector, with fixed relations between some of the soft breaking parameters, and find a significant reduction of fine-tuning for non-universal gaugino masses. For a Higgs mass of about 125 GeV, as observed recently, we find parameter regions with a fine-tuning of O(10), taking into account experimental and theoretical uncertainties. These regions also survive after comparison with simplified model searches in ATLAS and CMS. For a fine-tuning less than 20 the lightest neutralino is expected to be lighter than about 400 GeV and the lighter stop can be as heavy as 3.5 TeV. On the other hand, the gluino mass is required to be above 1.5 TeV. For non-universal gaugino masses, we discuss which fixed GUT scale ratios can lead to a reduced fine-tuning and find that the recent Higgs results have a strong impact on which ratio is favoured. We also discuss the naturalness of GUT scale Yukawa relations, comparing the non-universal MSSM with the CMSSM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.