Abstract

Printed on recycled paper Introduction In 2000, the U.S. Environmental Protection Agency (EPA) reviewed the arsenic drinking water standard for public water supplies. Considering the available research and statistics on the health effects of arsenic ingestion, the EPA reduced the Maximum Contaminant Level (MCL) for public drinking water from 50 micrograms per liter (μg/L) to 10 μg/L (U.S. Environmental Protection Agency, 2001a). As a result of the more stringent standard, the EPA estimates that about 3,000 public water providers across the United States must take action to meet the new standard before it becomes effective on January 23, 2006 (U.S. Environmental Protection Agency, 2001b). The City of Norman (City) is one of several Oklahoma municipalities affected by the new arsenic standard. About 20 percent of Norman’s water is supplied by wells completed in the Central Oklahoma (Garber-Wellington) aquifer; the rest is supplied by Lake Thunderbird (fig. 1) or purchased from Oklahoma City. The Norman well field is composed of 24 active wells, and water produced from about half of the wells will not be in compliance with the new MCL (figs. 2 and 3). Chemical treatment of water with elevated arsenic is possible, but it is generally cost prohibitive. Another costly solution is simply to abandon the high-arsenic wells and replace them with new wells in low-arsenic areas. In the next phase of well construction beginning in 2005, the City plans to construct as many as 30 new wells in northeast Norman (Bryan Mitchell, City of Norman, oral commun., 2005). The new wells will replace production lost to the new arsenic standard and add new production to keep pace with rapidly growing consumer demand. Well modification to exclude arsenic-bearing water from existing wells is a more cost-effective solution, but it requires a great deal of knowledge about local aquifer properties and individual well dynamics to decide which wells are good candidates for modification. With the goal of determining if well modification can be used to bring some of Norman’s high-arsenic wells into compliance with the new arsenic standard, the EPA Office of Research and Development (ORD) initiated a three-year research project in 2003 with participation from the U.S. Geological Survey (USGS), Oklahoma State University, and the City of Norman. The primary objectives of the project are to: (1) determine where naturally occurring arsenic is entering wells by collecting water samples at different depths, (2) investigate the utility of new methods for collecting water-quality data in a pumping well, (3) better understand the stratigraphy and composition of aquifer rocks, (4) assess 10 wells for the possibility of arsenic remediation by well modification, and (5) evaluate the effectiveness of well modification in bringing marginal wells into compliance with the new arsenic MCL. The purpose of this report is to describe the occurrence of arsenic in ground water near Norman, Oklahoma, and available options for reducing arsenic concentrations in produced ground water. Central Oklahoma (GarberWellington) Aquifer The City of Norman and many other municipalities in the Oklahoma City ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.