Abstract

Carbon is one of the most important chemical elements, forming a wide range of important allotropes, ranging from diamond over graphite to nanostructural materials such as graphene, fullerenes, and carbon nanotubes (CNTs). Especially these nanomaterials play an important role in technology and are commonly formed in laborious synthetic processes that often are of high energy demand. Recently, fullerenes and their building blocks (buckybowls) have been found in natural fossil materials formed under geological conditions. The question arises of how diverse nature can be in forming different types of natural allotropes of carbon. This is investigated here, using modern analytical methods such as ultrahigh-resolution mass spectrometry and transmission electron microscopy, which facilitate a detailed understanding of the diversity of natural carbon allotropes. Large fullerenes, fullertubes, graphene sheets, and double- and multiwalled CNTs together with single-walled CNTs were detected in natural heavy fossil materials while theoretical calculations on the B3LYP/6-31G(d) level of theory using the ORCA software package support the findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.